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Abstract

Background

While artificial intelligence (AI) offers possibilities of advanced clinical prediction and deci-

sion-making in healthcare, models trained on relatively homogeneous datasets, and popula-

tions poorly-representative of underlying diversity, limits generalisability and risks biased AI-

based decisions. Here, we describe the landscape of AI in clinical medicine to delineate pop-

ulation and data-source disparities.

Methods

We performed a scoping review of clinical papers published in PubMed in 2019 using AI

techniques. We assessed differences in dataset country source, clinical specialty, and

author nationality, sex, and expertise. A manually tagged subsample of PubMed articles

was used to train a model, leveraging transfer-learning techniques (building upon an existing

BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of

all eligible articles, database country source and clinical specialty were manually labelled. A

BioBERT-based model predicted first/last author expertise. Author nationality was deter-

mined using corresponding affiliated institution information using Entrez Direct. And first/last

author sex was evaluated using the Gendarize.io API.
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Results

Our search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis.

Most databases came from the US (40.8%) and China (13.7%). Radiology was the most

represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily

from either China (24.0%) or the US (18.4%). First and last authors were predominately

data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And

the majority of first/last authors were male (74.1%).

Interpretation

U.S. and Chinese datasets and authors were disproportionately overrepresented in clinical

AI, and almost all of the top 10 databases and author nationalities were from high income

countries (HICs). AI techniques were most commonly employed for image-rich specialties,

and authors were predominantly male, with non-clinical backgrounds. Development of tech-

nological infrastructure in data-poor regions, and diligence in external validation and model

re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical

AI is meaningful for broader populations, and to avoid perpetuating global health inequity.

Author summary

Artificial Intelligence (AI) creates opportunities for accurate, objective and immediate

decision support in healthcare with little expert input–especially valuable in resource-

poor settings where there is shortage of specialist care. Given that AI poorly generalises to

cohorts outside those whose data was used to train and validate the algorithms, popula-

tions in data-rich regions stand to benefit substantially more vs data-poor regions,

entrenching existing healthcare disparities. Here, we show that more than half of the data-

sets used for clinical AI originate from either the US or China. In addition, the U.S. and

China contribute over 40% of the authors of the publications. While the models may per-

form on-par/better than clinician decision-making in the well-represented regions, bene-

fits elsewhere are not guaranteed. Further, we show discrepancies in gender and specialty

representation–notably that almost three-quarters of the coveted first/senior authorship

positions were held by men, and radiology accounted for 40% of all clinical AI manu-

scripts. We emphasize that building equitable sociodemographic representation in data

repositories, in author nationality, gender and expertise, and in clinical specialties is cru-

cial in ameliorating health inequities.

Introduction

While there is no exact definition for artificial intelligence (AI), AI broadly refers to technolo-

gies that allow computer systems to perform tasks that would normally require human intelli-

gence [1–3]. Machine learning (ML), deep learning (DL), convolutional neural networks

(CNN), and natural language processing (NLP) are forms of automated decision-making tech-

niques that exist on the AI continuum, each requiring varying degrees of human supervision.

These forms of AI have all been rigorously applied to healthcare in both clinical and academic

settings, with particular acceleration in the last decade [4–10]. In a world where clinical deci-

sions are often impacted by conjecture, tradition, convenience, and habit, AI offers the
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possibility of robust and consistent decision-making–in many cases performing on par with or

better than human physicians, [11–13] creating a world wherein clinical practice is routinely

aided by AI [14].

The recent proliferation of AI in healthcare has been facilitated by factors such as increased

cloud storage (e.g., mass data compilation, labelling, and retrieval) and enhanced computer

power and speed, creating possibilities for reduced clinical errors and semi-automated out-

come prediction and enabling patients to promote their own health with their own unique

data [8,9,12]. However, the introduction of AI into healthcare comes with its own biases and

disparities; it risks thrusting the world toward an exaggerated state of healthcare inequity [15–

23]. Repeatedly feeding models with relatively homogeneous data, suffering from a lack of

diversity in terms of underlying patient populations and often curated from restricted clinical

settings, can severely limit the generalisability of results and yield biased AI-based decisions

[24]. For example, there is no guarantee that a model predicting diabetic retinopathy (DR)

built using the clinical trial data of a relatively small, homogeneous urban population within

the U.S. would be applicable to a cohort of patients living in rural areas of Japan [25]. Unequal

access to the very factors that have facilitated the proliferation of AI in healthcare (e.g., readily

available electronic health information and computer power) may be widening existing health-

care disparities and perpetuating inequities in who benefits most from such technological

progress.

Unless AI represents countries and clinical specialties equally in healthcare, or unless mod-

els are at the very least externally validated on diverse patient populations, entrenched dispari-

ties in healthcare may persist. Technological advancement alone will not drive the world

toward a state of healthcare equity; it must be coupled with an understanding of the under-

and over-represented patients in healthcare ML and with international efforts to combat the

risk of AI bias.

The current study describes the landscape of AI in clinical medicine to better understand

the disparities in data sources and patient populations.

Methods

Original search strategy and selection criteria

The present study applies ML techniques to comprehensively review all medical and surgical

(hereafter referred to as clinical) manuscripts published in PubMed through 2019 which

employ AI techniques (defined here as either AI, ML, DL, NLP, computer vision [CV], or

CNN). After identifying all such clinical manuscripts, we describe differences in both popula-

tions captured in databases and clinical specialty and in authors’ nationality, gender, and

domain of expertise to elucidate the extent of the disparities affecting AI in healthcare.

Our review can best be defined as a scoping review. Scoping reviews are a novel approach

well-suited for describing the mix of literature in a given area, in terms of the clinical special-

ties represented and the types of research questions being addressed [26–30]. Such types of

research topics include diagnosis, causation, and prognosis. Whereas a systematic review aims

to answer a specific clinical question, using a rigid protocol determined a priori (including an

assessment of research quality and risk of bias), a scoping review maps a body of literature,

identifies trends and deficiencies, and addresses broader research questions such as areas to

prioritize for research.

Eligibility of PubMed articles

Articles were presently deemed eligible for inclusion if they were (i) original research (i.e., not

post-hoc analyses, to avoid double-counting); (ii) medical or surgical research (i.e., not
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viewpoints, commentaries, or research without clinically applicable findings); (iii) human

research (e.g., studies that assessed mouse neural networks were excluded); (iv) published in

English; and (v) employing either AI, ML, DL, NLP, CV, or NN techniques.

Search methods

The PubMed search system allows a narrowed literature search using medical subject headings

(MeSH) and controlled vocabulary, filtering for specific terms and phrases in the titles of articles

(ti) within PubMed [31]. The following search was undertaken for the present study: ("machine

learning"[Majr] OR ("machine"[ti] AND "learning"[ti]) OR "machine learning"[ti] OR "AI"[ti]

OR "Artificial Intelligence"[ti] OR "artificially intelligent"[ti] OR "Artificial Intelligence"[MeSH]

OR "Algorithms"[MeSH] OR "algorithm�"[ti] OR "deep learning"[ti] OR "computer vision"[ti]

OR "natural language processing"[ti] OR "neural network�"[ti] OR "neural networks, compu-

ter"[MeSH] OR "intelligent machine�"[ti]) AND 2019/1/1:2019/12/31[Date—Publication].

Machine learning model building to predict shortlist of eligible articles

The PubMed search above identified 30,576 articles published in 2019. To build our training

dataset, we randomly selected 2,000 articles and manually screened them for eligibility using

Covidence review software [32]. Two independent reviewers assessed the 2,000 articles for eli-

gibility by checking (i) the manuscript title, (ii) the abstract, and (iii) the full text (in cases

where eligibility was still unclear). Where the two reviewers disagreed about an article’s eligi-

bility, both manually cross-checked the full article again; a third reviewer’s decision deter-

mined the final eligibility.

Articles in PubMed missing either a title or an abstract were excluded from analyses, since

there would not be sufficient information to characterize the machine learning model(s) being

described in the paper. A-posteriori manual review of the full texts revealed that such articles

were almost exclusively commentaries, editorials, letters, and post-hoc analyses rather than full

research manuscripts, confirming their ineligibility to be part of our scoping review.

Using the subset of 2,000 labelled manuscripts classified into two categories (eligible and

non-eligible), a machine learning model was trained to predict eligibility for the remaining set

of 2019 PubMed search results for clinical artificial intelligence articles according to the above-

mentioned criteria. The trained model predicted the remaining articles to be either eligible or

non-eligible. Our model leveraged transfer-learning techniques building upon BioBERT, a

biomedical language representation model designed for biomedical text mining tasks [33].

BioBERT was originally trained on different combinations of the following text corpora:

English Wikipedia (Wiki), BooksCorpus (Books), and PubMed abstracts (PubMed). The pre-

trained BioBERT model was sourced from Huggingface. We used Biobert_v1.1_pubmed by

Monologg [34]. First, we removed the final layer of BioBERT and replaced it with a final classi-

fication layer tailored to our supervised binary classification task. The final layer was fine-

tuned using titles and abstracts from 1,600 of the 2,000 manually screened articles, saving 20%

for validation. Next, the full model was fine-tuned on the 1,600 articles. Lastly, we validated

the model on the remaining 400 manually screened articles. Two other independent reviewers

checked the predictions output by the model, controlling for potential biases and outliers

among the resulting probability scores on a scale from 0 to 100%. The code for this model is

available at Github (https://github.com/Rebero/ml-disparities-mit).

Extracting the source of each paper’s database and its clinical specialty

We determined the country from which the database was sourced by manually tagging two

randomly generated subsamples of 300 papers each from the shortlist of 7,314 articles labelled
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as eligible. To properly label each instance, we independently reviewed the text (usually the

methodology section or the data availability statement) or the supplementary material. In

instances where the provenance of the database used to build the model(s) was not declared in

either the manuscript or the supplementary material, or when it was imprecise (e.g., “multiple

countries throughout Eastern Europe”), the label was marked as missing. Upon completion of

this task, the two reviewers compared their two manually labelled subsamples for consistency.

The two subsamples were then combined into a sample of 600 manually curated papers.

Table 1 shows the results of the manual labelling of each of the 300 subsamples, while Fig 1A

and 1B show the combined results.

In parallel, the clinical specialty of the manuscript was similarly determined by two inde-

pendent reviewers manually curating two subsamples of 300 papers that were randomly

Table 1. Tagged subsamples of distribution of database nationality in AI in medicine.

Subsample 1 Subsample 2

Country Count Percent Country Count Percent

United States of America 124 48.8 United States of America 82 32.7

China 30 11.8 China 39 15.5

United Kingdom 18 7.1 Germany 19 7.6

Germany 10 3.9 United Kingdom 16 6.4

Australia 8 3.1 South Korea 10 4.0

Japan 8 3.1 Canada 10 4.0

Canada 7 2.8 Netherlands 9 3.6

South Korea 5 2.0 Japan 7 2.8

Netherlands 5 2.0 France 5 2.0

Austria 4 1.6 Spain 5 2.0

France 4 1.6 Australia 4 1.6

North Korea 4 1.6 Turkey 4 1.6

Brazil 3 1.2 Switzerland 4 1.6

Israel 3 1.2 India 4 1.6

Italy 3 1.2 Italy 3 1.2

Spain 2 0.8 Taiwan 3 1.2

Switzerland 2 0.8 Austria 3 1.2

Sweden 2 0.8 Denmark 3 1.2

Czechia 2 0.8 Mexico 3 1.2

India 1 0.4 New Zealand 2 0.8

Bangladesh 1 0.4 Czechia 2 0.8

Thailand 1 0.4 Norway 2 0.8

Zambia 1 0.4 Sweden 2 0.8

Slovenia 1 0.4 Malaysia 1 0.4

Malaysia 1 0.4 Indonesia 1 0.4

Mexico 1 0.4 Finland 1 0.4

Taiwan 1 0.4 Serbia 1 0.4

New Zealand 1 0.4 Brazil 1 0.4

Pakistan 1 0.4 Israel 1 0.4

- - - South Africa 1 0.4

- - - Portugal 1 0.4

- - - Belgium 1 0.4

- - - Iran 1 0.4

Total 254 100 Total 251 100

https://doi.org/10.1371/journal.pdig.0000022.t001
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selected from the shortlist of articles labelled as eligible. The clinical specialty of each paper

was determined by assessing (i) which medical or surgical specialist would use the AI findings

in their own clinical practice, (ii) which medical or surgical specialty the AI model was being

compared with, or (iii) the specialty of the journal in which the article was published, in cases

where neither (i) nor (ii) was clear. For each of the two subsamples, the two reviewers com-

pared their labels; when needed, a third reviewer’s decision determined the final specialty of

the paper. If multiple specialties were deemed related, then multiple labels were assigned. Con-

versely, if no specialty was deemed relevant, no label was assigned. Similar to the process used

to label the source of the database, the two subsamples of 300 papers were then combined to

present the final results. The results of the manual labelling of each of the 300 subsamples can

Fig 1. (a) Confusion matrix and ROC curve. (b) Confusion matrix and ROC curve.

https://doi.org/10.1371/journal.pdig.0000022.g001
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be found in Table 2, and the overall combined results in Fig 2. A heat map was generated using

the geopandas package, an open source project to work and plot geospatial data in Python (Fig

2B) [35].

Machine learning model to predict each author’s domain of expertise

The domain of expertise of each author was determined using a similar approach to the identi-

fication of papers’ clinical specialties. Specifically, a machine learning model was trained to

predict the domain of expertise of the first and last authors for the entire shortlist of eligible

articles. First, the domains of expertise of the first and last authors were manually labelled in

the subset of eligible articles from the randomly generated 2,000 articles originally screened in

Covidence. For this, two independent reviewers classified the first and last author as either (i)

a data expert (i.e., statistician), (ii) a domain expert (i.e., a medical specialist or surgeon), or

(iii) other. Results of the manually labelled subsamples were compared between reviewers to

ensure consistency; a third reviewer made the final decision. Second, we trained a classifier to

predict the expertise of the first and last author among the three abovementioned categories.

For this, we used transfer-learning techniques and fine-tuned an existing BioBERT model. The

Table 2. Tagged subsamples of distribution of paper specialty in AI in medicine.

Subsample 1 Subsample 2

Specialty Count Percent Specialty Count Percent

Radiology 147 48.4 Radiology 71 30.1

Pathology 35 11.5 Neurology 29 12.3

Ophthalmology 24 7.9 Medicine 28 11.9

Cardiology 15 4.9 Ophthalmology 16 6.8

Oncology 14 4.6 Cardiology 14 5.9

Neurology 11 3.6 Pathology 14 5.9

Surgery 11 3.6 Psychiatry 13 5.5

Pediatrics 6 2.0 Oncology 10 4.2

Dermatology 6 2.0 Intensive Care 10 4.2

Gastroenterology 5 1.6 Orthopedics 6 2.5

Anesthesia 4 1.3 Gastroenterology 5 2.1

Intensive Care 3 1.0 Public Health 5 2.1

Emergency 3 1.0 Respiratory 4 1.7

Obstetrics/Gynecology 3 1.0 Dermatology 3 1.3

Public Health 3 1.0 Pediatrics 2 0.8

Hematology 2 0.7 Surgery 1 0.4

Endocrinology 2 0.7 Obstetrics 1 0.4

Administration 1 0.3 Nephrology 1 0.4

Epidemiology 1 0.3 Maxillofacial surgery 1 0.4

Urology 1 0.3 Infectious Diseases 1 0.4

Rheumatology 1 0.3 Dentistry 1 0.4

Orthopedics 1 0.3 - - -

Histology 1 0.3 - - -

Genetics 1 0.3 - - -

Respiratory 1 0.3 - - -

Psychiatry 1 0.3 - - -

Infectious Diseases 1 0.3 - - -

Total 304 100 Total 236 100

https://doi.org/10.1371/journal.pdig.0000022.t002
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model was trained on the 1,852 (i.e., 92.6%) manually screened articles containing the consid-

ered author’s affiliation as well as their background, following the same process than for the

model built to predict the eligibility of articles. Next, the full model was fine-tuned. Lastly, we

validated the model on the remaining 148 (i.e., 7.4%) manually screened articles. The corre-

sponding code is available at Github (https://github.com/Rebero/ml-disparities-mit).

Approach to identify each author’s nationality and gender

For each publication, the list of authors and their corresponding affiliated institutions were

acquired using Entrez Direct (EDirect), the suite of interconnected databases made available

by the National Center for Biotechnology Information (NCBI) and accessible via a Unix termi-

nal window [36]. Given that the raw data contained the country of each research institution

present in the list, the field was first tokenized and the resulting array of tokens was then

parsed to retrieve country names. Each author was subsequently linked to the country in

which their institution is based. Occasionally, some authors were affiliated with institutions

spanning two or more countries. In those instances, all of their affiliated countries were

mapped to the corresponding author.

The first name of all authors was extracted from each article using metadata and subse-

quently processed through the Genderize.io Application Programming Interface (API) [37–

Fig 2. (a) Distribution of overall database nationality in AI in medicine. (b) Heatmap of distribution of overall

database nationality in AI in medicine (reference #35)

https://doi.org/10.1371/journal.pdig.0000022.g002
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39]. The API contains a collection of previously annotated first names and their reported gen-

der. Based on the ratio of male to female examples stored in the underlying database, the API

calculates the probability of a male or female gender and assigns the most likely gender to the

first name under consideration.

Results

Final shortlist of eligible clinical AI articles published in PubMed through

2019

The abovementioned PubMed search yielded 30,576 clinical AI articles published through

2019 prior to further screening for eligibility. Of the 2,000 articles manually screened, 368 (i.e.,

18.4%) were found to be eligible. This labelled subset was subsequently used to train and test

the model used to predict article eligibility. Our model achieved both a high Matthews correla-

tion coefficient (MCC) of 0.88 and a high Area under the ROC Curve (AUROC) of 0.96 on the

test dataset. In the case of a tie (i.e., a predicted probability for eligibility of 50%), we biased the

model to err on the side of classifying an article as eligible rather than ineligible. The objective

was indeed to limit the number of articles that could be misclassified as ineligible while they

should in fact be included (Fig 1A). Using such a framework, we ran our ML model to assess

eligibility of all articles published in 2019. A total of 7,314 (i.e., 23.9%) were deemed “eligible”,

based on the criteria described above.

Identification of the sources of the database(s) being used in the papers

Of the two subsamples of 300 eligible papers each that we manually labelled, 254 and 251 (i.e.,

~84%) mentioned the sources of the database(s) being used, either in the manuscript or in the

supplementary material (Table 1). The U.S. accounted for the majority of the data sources in

both subsamples (48.8% and 32.7%, respectively), followed by China (11.8% and 15.5%,

respectively). Other countries represented in both subsets, including the U.K., Germany, Can-

ada, and South Korea, had a substantially smaller prevalence (Table 1). Results emanating

from the two labelled subsets were thus deemed comparable and combined; pooled results are

presented in Fig 2A and 2B. In sum, the U.S. contributed the vast majority of AI datasets pub-

lished in 2019 (40.8%), followed by China (13.7%), the U.K. (6.7%), and Germany (5.7%).

Determination of each paper’s clinical specialty

Radiology was the most represented clinical specialty in both subsamples of manually labelled

data (48.4% and 30.1%, respectively) (Table 2). Pathology, ophthalmology, neurology, and car-

diology comprised four of the following five specialties in both subsets. Results were subse-

quently concluded to be comparable and combined (Table 2). Radiology brought the highest

number of clinical AI studies in 2019 (accounting for 40.4% of pooled studies), followed by

pathology (9.1%), neurology, ophthalmology (both 7.4%), cardiology (5.4%), and internal/hos-

pital/general medicine (5.2%) (Fig 3).

Estimation of each author’s nationality, domain of expertise, and gender

Overall, nationalities of 123,815 authors were extracted from the 7,314 eligible articles and dis-

tribution of author nationalities are shown in Fig 3. Most authors came from either China or

the U.S. (24.0% and 18.4%, respectively), followed by Germany (6.5%), Japan (4.3%), the U.K.

(4.1%), Italy, France, Canada (each 3.6%), Australia, the Netherlands (each 2.8%), Spain

(2.7%), and India (2.3%) (Fig 4). The model for predicting the author background achieved
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both a high Matthews correlation coefficient (MCC) of 0.85 and a high Area under the ROC

Curve (AUROC) on the test dataset (Fig 1B).

We found that both the first and last authors were predominantly data experts (59.6% and

53.9%, respectively), followed by domain experts (36.5% and 41.4%, respectively), and other

experts (3.9% and 3.8%, respectively) (Fig 5). Overall, the majority of first and last authors

were male (combined: 74.1%, first: 73.6%, last: 79.5%) (Fig 6).

Fig 3. Distribution of overall paper specialty in AI in medicine.

https://doi.org/10.1371/journal.pdig.0000022.g003

Fig 4. Distribution of overall author nationality in AI in medicine.

https://doi.org/10.1371/journal.pdig.0000022.g004

PLOS DIGITAL HEALTH Sources of bias in ai that perpetuate healthcare disparities—A global review

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000022 March 31, 2022 10 / 19

https://doi.org/10.1371/journal.pdig.0000022.g003
https://doi.org/10.1371/journal.pdig.0000022.g004
https://doi.org/10.1371/journal.pdig.0000022


Discussion

Our study demonstrates substantial disparities in the data sources used to develop clinical AI

models, representation of specialties, and in authors’ gender, nationality, and expertise. We

found that the top 10 databases and author nationalities were affiliated with high income coun-

tries (excluding China), and over half of the databases used to train models came from either

the U.S. or China [40]. While pathology, neurology, ophthalmology, cardiology, and internal

medicine were all similarly represented, radiology was substantially overrepresented, account-

ing for over 40% of papers published in 2019, perhaps due to facilitated access to image data.

Fig 5. Distribution of first and last author expertise in AI in medicine.

https://doi.org/10.1371/journal.pdig.0000022.g005

Fig 6. Distribution of overall author gender in AI in medicine.

https://doi.org/10.1371/journal.pdig.0000022.g006
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Additionally, more than half of the authors contributing to these clinical AI manuscripts had

non-clinical backgrounds and were three times more likely to be male than female.

Here, we show that most models are trained with U.S. and Chinese data. This finding is

unsurprising, given the importance of cloud storage as well as computer power and speed in

gathering clinical data to build models and the relatively advanced technological and AI infra-

structure within these countries. It intuitively follows that most authors of clinical papers

implementing AI methods are from these regions, too. We stress that while such dispropor-

tionate overrepresentation of U.S. and Chinese patient data in AI brings the risk of bias and

disparity, it does not negate/undercut/undermine the value of understanding when and why

these models remain beneficial, particularly in data-poor and demographically diverse regions

(both within these nations and globally).

Model pre-training offers a particular mechanism through which AI built in data-rich areas

might be applied in data-poor regions. Pre-training has grown primarily through NLP, where

contextual word embedding models such as Word2Vec, [41] GloVe, [42] and BERT have

improved performance of models across a variety of tasks [43]. Pre-trained models are gener-

ally trained in one task and subsequently leveraged to solve similar problems. For example,

BERT models were built using clinical notes from the publicly available MIMIC-III database

for enhanced disease prediction, [44] and have since been used to improve clinical Japanese

data representation written in other languages, [45] and integrated with other complementary

medical knowledge databases [46]. While development costs can be high (e.g., training GPT-3,

a novel large-scale language, cost over $10 million and required more than 300GB of memory),

[47] such frameworks negate the limitations of working with smaller datasets through leverag-

ing existing models for recalibration for diverse target populations. Understanding how and

why primary models are applicable to different cohorts (i.e., with previously unseen data) also

contributes towards refining initial model methodology and proposing robust model

alternatives.

The lack of diverse digital datasets for ML algorithms can amplify systematic underrepre-

sentation of certain populations, posing a real risk of AI bias. This bias could worsen minority

marginalisation and widen the chasm of healthcare inequality [10]. Although understanding

these risks is crucial, to date inadequate appreciation for them has occurred. A recent review of

international COVID-19 datasets used to train ML models for predicting diagnosis and out-

comes showed that of the 62 shortlisted manuscripts, half neither reported sociodemographic

details of the data used to train their models nor made any attempt to externally validate their

results or assess the sensitivity of the models. None of the studies performed a proper assess-

ment of model bias [48].

Moreover, applying non-validated models (curated with homogeneous data) on socio-

demographically diverse populations poses a considerable risk [49]. For example, if a model

created with exclusively U.S. data were used to predict the mortality of a Vietnamese COVID-

19 population (without external validation), predictions might be inaccurate, given the model’s

founding “understanding” of outcomes formulated from an exclusively U.S. population. If the

physician clinically applying model predictions did not fully appreciate this risk, the model

might hold undue (because unsubstantiated) influence over the decision to escalate or with-

draw care. Alternatively, if this limitation is known, the model may simply not be used at all,

thereby restricting benefits to the U.S. population upon whose data it was exclusively trained.

Either outcome is disadvantageous to populations not represented in the large datasets com-

monly used to build these models.

Increased computer power and massive dataset availability has driven the growth of ML in

healthcare, especially over the last decade. The volume of data being generated cannot be

understated—108 bytes in the U.S. alone, with annual growth of 48%—as well as increasing
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uptake of digital electronic healthcare systems and proliferation of medical devices [50]. The

ability of machines to interpret and manipulate data relatively-independent of human supervi-

sion/input brings with it the immense potential for improvements in healthcare quality and

accessibility–particularly in resource-poor settings where specialist opinion is not as readily

available [51,52].

While we echo the call for increased data diversification and equity to remedy disparities in

data representation, such worthwhile efforts will take time and require the development of

complex and costly technological infrastructure. External validation may provide a much

more practical, short-term solution to healthcare inequities born of data disparity. Investing in

the infrastructure for local validation and model re-calibration will also lay the groundwork

for eventual contribution of local data to international data repositories.

The importance of externally validating models within populations should also be noted.

Indeed, this was highlighted in a recent study that used CNNs to assess pneumonia severity in

over 150,000 chest radiographs in the U.S. [53] Despite high model accuracy within the centre

in which it was built, authors found that the model performed poorly when applied to data

from another institution within the same country. Similar within-nation biases have been

shown in recent ophthalmic AI models predicting DR with similar or greater accuracy than

fully-trained ophthalmologists.13,25 Closer inspection reveals the models to be built using data

originally from the RISE and RIDE trials (composed of ~530 North/South American patients,

of whom>80% were white and<1% Native American/Alaskan) [54]. While model predic-

tions may be accurate and applicable for white North Americans, if they were used for a Native

American population (who suffers more than double the prevalence of type II diabetes, as high

as 49%), their accuracy would be limited and potentially misleading [25,52,55,56]. Benefits of

international external validation are ever-apparent, with 172 countries (totaling ~3.5 billion

people) lacking any public ophthalmic data repository); [57,58] however, the importance of

within-nation validation cannot be understated.

The above examples outline the complexities of the concept of generalizability itself.

Because the effects of hospital- and physician-level decisions on model performance cannot be

neglected, models trained under specific contexts and assumptions should be assessed for per-

formance when applied elsewhere (even within the same country) and continuously moni-

tored. Only then will we begin to understand the clinical circumstances in which AI-based

models provide the most insight and to identify settings in which they do not. Such learnings

will in turn help increase the utility of clinical AI models [24].

Unsurprisingly, we found that clinical specialties with higher volumes of stored imaging

were disproportionately overrepresented. On the one hand, this disparity underscores that the

benefits of AI advances may not apply universally across medical and surgical specialties. As

benefits of AI in medicine become clearer, efforts will be needed to train AI experts in various

fields, especially those for which key areas that could be augmented by AI have yet to be devel-

oped. On the other hand, our findings also suggest a means through which disparities among

clinical specialties could potentially be mitigated: the role that radiology, pathology, ophthal-

mology, neurology, and cardiology have played in leading the development of clinical AI may

yield efficient computational methods that are either applicable or transferrable to other fields.

For example, developments pioneered largely by radiology are now being applied to radiation

oncology [59–61]. Furthermore, existing disparities in ML in medicine may galvanize future

efforts in other clinical fields to work towards inclusivity in the data being collected and

towards equity in the deployment of models based upon them.

As more AI/ML-based software becomes widely available for screening and diagnosis (e.g.,

breast cancer and melanoma screening tools, COVID-19 prognostic models, etc.), regulations

surrounding their approval must also evolve [3]. Currently, such medical devices can be
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approved through various regulatory pathways. The 510(k) pathway, which requires the proof

of “substantial equivalence” to an already-marketed device (i.e., pre-existing AI/ML devices),

[62] has been one of the primary approval pathways for such medical devices in the U.S. To

date, the safety of medical devices cleared through this pathway has been controversial. As

more medical devices employing AI/ML techniques are approved, an understanding of the

populations they are recommended for–and how they differ from those who contributed the

data used to train the underlying models–is warranted.

Our analysis also revealed that the first and last authors of clinical AI papers published in

2019 were three times more likely to be men than women and marginally more likely to be

data specialists rather than clinical experts. The underrepresentation of women in research,

especially women of color, and in datasets used to inform AI is well-documented and dis-

cussed in detail elsewhere [63,64]. Historically, algorithms have only poorly accounted for dif-

ferences in patient characteristics like biological sex, although individual-level factors are often

involved in complex causal relationship patterns. For example, biological differences between

patients can affect the metabolism and efficacy of certain pharmacological compounds and

should be accounted for when predicting outcomes of treatment with a certain drug [63]. Gen-

der discrimination in clinical AI authorship is even less studied and not comprehensively

described. While a number of metrics based on funding, hiring, grant allocation, and publica-

tion statistics suggests that gender disparities in healthcare research may have decreased in the

past few years, subtler disparities persist. Indeed, recent research has shown that women are

still significantly underrepresented in the prestigious first and last author positions and in sin-

gle-authored papers. Our results, although specific to the field of clinical AI, are consistent

with this literature [65]. It is concerning that such disparities in clinical AI research and pub-

lishing exist, despite a higher proportion of bachelor degrees being awarded to women since

the 1980s and gender equity among PhD recipients in the U.S. [66] Further, it remains to eluci-

date the implications of the lack of gender balance in clinical AI research authorship for patient

outcomes.

Limitations

Nonetheless, our study presents several methodological limitations. As a scoping review, our

analysis includes data from papers published in 2019 alone. Although a great number of stud-

ies were included, we were unable to systematically assess temporal trends in clinical AI dis-

parities. We measure these disparities by quantifying the lack of international representation

in terms of both data sources and research authors but do not account for disparities that exist

within countries. Future work must determine how AI/ML disparities might manifest locally

and globally and identify ways to mitigate them, taking into consideration between- and

within-country population differences. Moreover, classification by clinical specialty may be

restrictive and not holistically capture the many fields in which model-derived findings can

apply. For example, an ML-based study of chest radiographs would augment a radiologist’s

work but might also impact the care provided by a cardiologist, a pulmonologist, an internal

medicine physician, and many other clinicians to their patients. Importantly, the gender infer-

ence methods used in this paper, as with any methods outside of direct survey and self-identifi-

cation, are imperfect and likely to have misgendered a subset of the author population.

Additionally, the Genderize.io API was unable to assign a gender to every author name. Fur-

ther, the API is not inclusive beyond the gender binary (e.g., intersectional gender and they/

them pronouns are not considered). We appreciate that author affiliation is not necessarily

representative of author nationality, as it was used here to describe. Indeed, despite our own

authors hailing from Australia, Canada, the U.S., Philippines, France and Germany–all of our
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affiliations suggest we are from the U.S.–highlighting further intrinsic biases in data, subse-

quently embedded into AI if not carefully accounted for. Of note, only articles published in

English were included; while still capturing the majority of international clinical (i.e., medical

and surgical) journals, this design choice may have led to selection bias. Finally, because the

ML models we built were trained to run solely on article abstracts, the exact data sources–

often mentioned in the supplementary material and not easily accessible–could only be

extracted for a portion of the articles. However, we believe that our independent review pro-

cess, which resulted in consistent results across multiple and relatively large subsamples, can

alleviate this limitation.

Conclusions

Here, we demonstrate both population- and author-sources contributing toward bias in AI in

healthcare. We find that U.S. and Chinese datasets and authors are disproportionately overrep-

resented in clinical AI. Image-rich specialties (i.e., radiology, pathology, and ophthalmology)

are the most prevalent among clinical AI studies published in 2019. Additionally, the authors

of these papers are predominantly male researchers with non-clinical backgrounds.

The rapid evolution of AI in healthcare brings unprecedented opportunities for accurate,

efficient, and cost-effective diagnosis superseding the accuracy of clinical specialists, but with

minimal human input–especially valuable in resource-poor settings where specialist input is

relatively scarcer. Although medicine stands to benefit immensely from publicly available

anonymised data informing AI-based models, pervasive disparities in global datasets should

be addressed. In the long-term, this will require the development of technological infrastruc-

ture in data-poor regions (i.e., cloud storage and computer speed). Meanwhile, researchers

must be particularly diligent with external validation and re-calibration of their models to elu-

cidate how and when AI/ML findings derived from a local patient cohort can be applied inter-

nationally to heterogeneous populations. While investments in technology architecture are

being made, these efforts should at least help reduce disparities in access to AI/ML-driven

tools.

While clinical AI models trained under certain assumptions and contexts may perform

flawlessly among patients of the medical centre at which they were built, they may fail alto-

gether elsewhere. As the scope of influence of AI in healthcare grows, it is critical for both clin-

ical and non-clinical researchers to understand who may be negatively affected by model bias

through underrepresentation and to assess the extent of model utility externally in order to

make the vast amount of data being collected and its AI applications meaningful for a broader

population.
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